This article was downloaded by: On: 24 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597274

¹³-Nuclear Magnetic Resonance Studies of Polyetherurethaneureas

Alok R. Ray^a; Ashis Bhowmick^a ^a Centre for Biomedical Engineering Indian Institute of Technology Delhi All India Institute of Medical Sciences Hauz Khas, New Delhi, India

To cite this Article Ray, Alok R. and Bhowmick, Ashis(1991) '¹³-Nuclear Magnetic Resonance Studies of Polyetherurethaneureas', Journal of Macromolecular Science, Part A, 28: 10, 1009 – 1023 **To link to this Article: DOI:** 10.1080/00222339108054081 **URL:** http://dx.doi.org/10.1080/00222339108054081

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

¹³C-NUCLEAR MAGNETIC RESONANCE STUDIES OF POLYETHERURETHANEUREAS

ALOK R. RAY* and ASHIS BHOWMICK

Centre for Biomedical Engineering Indian Institute of Technology Delhi

All India Institute of Medical Sciences Hauz Khas New Delhi 110016, India

ABSTRACT

A series of linear polyurethaneureas was prepared by a two-step solution polymerization method. The prepolymer formed by the reaction of 4,4'-diphenyl methane diisocyanate with polyethylene glycol/polypropylene glycol was further chain extended with ethylene diamine/propane diamine/hexane diamine. The chemical shift values of various carbon species of the block copolymer were analyzed and assigned. The products formed due to the presence of water at different stages of polymerization were also characterized.

INTRODUCTION

¹³C-NMR has been widely used [1-4] to elucidate the structure of polymers. Similar studies [5] of polyurethaneureas are very limited. Therefore, it was difficult to establish the structures of the polymer and its side products. In order to overcome these difficulties, we have prepared and characterized ¹³C-NMR spectra of a series of polyurethaneureas based on 4,4'-diphenyl methane diisocyanate, polyethylene glycol (PEG)/polypropylene glycol (PPG), and ethylene diamine (EDA)/propane diamine (PDA)/hexane diamine (HDA). Because the presence of

1009

(1)

water in either the starting materials and/or the solvents leads to the formation of several side products, an attempt was made to identify them by separately synthesizing these products and subsequently characterizing their spectra. This approach enabled us to follow the reaction path and to determine the structure of the final product.

EXPERIMENTAL

Polypropylene glycol (Polysciences) and polyethylene glycol (Sigma Chemicals) of molecular weights 400, 600, and 1000 were degassed for 3 h at 60°C at 0.01 mmHg pressure before use.

4,4'-Diphenyl methane diisocyanate (MDI), obtained from TMI, Japan, was distilled under reduced pressure (0.01 mmHg) at 140°C in a jacketed Vigreux column and used immediately. The isocyanate content was determined by using the ASTM D1638-74 method. Dimethylformamide (DMF) and dimethylsulfoxide (DMSO), obtained from Fisher Scientific, were double distilled over calcium hydride under 0.01 mmHg pressure. 1,6-Hexane diamine and 1,3-propane diamine were obtained from Fisher Scientific and were used without further purification.

All reactions were carried out in flame-dried glassware. The prepolymerization was carried out in a mixed solvent of DMF and DMSO (2:3 by volume) at 80°C for 2 h in a dry nitrogen atmosphere. The chain extension reactions were carried out at 0°C in a 10% w/v solution containing a mixture of DMF and DMSO in a 2:3 volume ratio. All model compounds were synthesized following the methods described by Pethrick et al. [6, 7]. The chemical compositions of all the synthesized materials are given in Table 1.

Proton noise decoupled ¹³C-NMR spectra were recorded on a Jeol PFT-100 spectrometer. Both polymers and intermediates were studied in deuterated DMSO solutions at ambient temperature. Usually 5000-8000 scans were collected for each spectrum.

RESULTS AND DISCUSSION

We followed Paul and Grant's [5] additive relationship in assigning chemical shift values for different carbon species. Chemical shifts are expressed in the following way in this approach.

$$j_i = B + \Sigma A_j n_{ij}$$

POLYETHERURETHANEUREAS

Materials	Abbreviation	Composition
Polyethylene glycol, MW 400: 4,4'-diphenyl methane diisocy- anate: 1,3-propane diamine	PEUU(400)PDA	1:2:1
Polyethylene glycol, MW 600: 4,4'-diphenyl methane diisocy- anate: 1,3-propane diamine	PEUU(600)PDA	1:2:1
Polyethylene glycol, MW 1000: 4,4'-diphenyl methane diisocy- anate: 1,3-propane diamine	PEUU(1000)PDA	1:2:1
Polyethylene glycol, MW 600: 4,4'-diphenyl methane diisocy- anate: 1,2-ethylene diamine	PEUU(600)EDA	1:2:1
Polyethylene glycol, MW 600: 4,4'-diphenyl methane diisocy- anate: 1.6-hexane diamine	PEUU(600)HDA	1:2:1
Polypropylene glycol, MW 1000: 4,4'-diphenyl methane diisocy- anate: 1.3-propane diamine	PPUU(1000)PDA	1:2:1
Polypropylene glycol, MW 1000: 4,4'-diphenyl methane diisocy- anate: 1,6-hexane diamine	PPUU(1000)HDA	1:2:1

TABLE 1. Compositions and A	bbreviations of Synthesized
Linear Polyetherurethanureas	

where	j,	=	chemical	shift	of	ith	С	atom

- B = a constant given by the ¹³C-NMR chemical shift of methane (-2.3 ppm)
- n_{ij} = number of C atoms in position j with respect to C_i

 A_j = additive shift parameter of C atom j

Additives parameters (A_j) for alkanes, esters, and ethers are available [7]. By using these values, chemical shifts for polymers containing these functional groups can be predicted with an accuracy of ± 2 ppm. Additive parameters for urethane and urea groups are not available, but by the model compound method the chemical shifts for carbon species in the urethane and urea groups have already been assigned. By taking

Chemical structure code	α	β	γ	δ	£
Α	49.02	4.95	-6.19		
В	24.45	7.18	-3.45	-1.65	
C ^a	57.70	8.00	-4.90	1.00	0.30
D^{a}	9.10	9.40	-2.50	0.30	0.10

TABLE 2. Additive Parameters (A_i)

^aData taken from Ref. 7.

Α

В

-сн₂сн₂о-С

-CH2CH2-

D

these values into consideration, a linear multiple regression analysis of chemical shift values for urethane and urea groups was made by using Eq. (1). The values obtained for these additive parameters are given in Table 2. These additive parameters were used in calculating the chemical shift values of the alkane skeletons from which these molecules are derived. Chemical shift values for propanol-based urethane and propylamine-based urea compounds were also calculated (Table 3). When these

TABLE 3. ¹³C Chemical Shift of Dipropyldicarbamate and Dipropyldiurea

				•	•		- -				
Chemical	Chemical				Ca	rrbon spe	ecies				
structure code	shift (ppm)	1	2	3	4	5	6	7	œ	6	
н	Predicted Observed	40.3 39.8	138.5 135.6	127.9 129.0	117.9 118.6	136.5 137.6	153.6 154.0	65.2 65.8	23.0 22.0	10.0 10.0	
		la	2a	3a	4a	5a	6a	7а	8a	9a	
ц	Predicted	39.8	134.8	129.0	118.0	138.7	155.6	40.6	23.0	12.7	
	Observed	39.8	134.6	129.0	118.0	138.7	155.6	40.8	23.0	11.2	
		æ -		- م ا							
	ш	CH3CH2C	CH2 00Ch			-NHCOOC	Н2СН2 С	нз			
		- n	٥	- 7	3a +- 5a	-	8a 1				
	Ľ	снзсн ₂ с	сн ₂ инсо		CH ₂	NHCONHO	сн2сн2с	H ₃			
					a 2a 4a	60	- ð	-			

POLYETHERURETHANEUREAS

1013

chemical shift values were compared with those observed experimentally, the difference was within ± 2 ppm. This approach was further extended to diethylglycol-based urethane and polypropylene glycol and polyethylene glycol-based urethaneureas (Tables 4, 5, and 6).

All observed ¹³C-NMR chemical shift values of the synthesized material could not be assigned by using this approach. All side products were analyzed in order to identify them. The most significant side reaction is the interaction of isocyanate with water and with solvents. DMF and DMSO were the two solvents used. DMSO does not react with isocyanate. Aromatic isocyanate reacts with DMF as shown in Fig. 1 [8]. However, when an isocyanate and DMF were heated up to 100°C, which was the reaction temperature for polymerization, this type of product (Product 1) could not be isolated.

structure code	Carbon species	Predicted, ppm	Observed, ppm
G	1	40.3	40.0
	2	138.5	135.6
	3	127.9	129.0
	4	117.9	118.6
	5	136.5	138.5
	6	153.6	153.6
	7	63.8	65.2
	8	69.4	69.7

TABLE 4. ¹³C Chemical Shift of PolydiethyleneEther Urethane

	TABLE 5.	³ C Ch	emical S	shifts o	f Synth	nesized	Polypr	opoxy	Uretha	neureas	:
Chemical	Chemical	:					Carbon	specie	s		
structure code	shift, ppm	1	2	3	4	5	6	7	8	6	10
PPUU(1000)PDA PPUU(1000)HDA	Predicted Observed Observed	43.3 41.7 40.9	138.7 138.2 138.4	127.9 128.8 129.5	118.0 118.3	136.5 135.7 135.5	153.6 153.6 153.6	16.9 17.1	17.2 17.7	72.9-71.5 72.4-75.4	70.1-71.0 70.0-72.0
		la	2a	3a	4a	5a	6a	7a	8a	9a	
PPUU(1000)PDA PPUU(1000)HDA	Predicted Observed Observed	39.8 40.8 40.7	134.6 135.1 134.1	129.0 129.2 128.6	118.0 118.8	138.5 137.6 137.6	155.6 153.0 155.5	37.2 38.3 38.3ª	30.2 30.0 30.2 ^b	27.3°	
^a Predicted value 36 ^b Predicted value 30 ^c Predicted value 27	8.4. 0.3. 7.1.										
4-1	осони (сн ₂ х = сн ₂ сн ₂ сн х = сн2 сн ₂ с	сн3 ^а ⁹ сн3 ^а сн0) (1 ₂ in PF H ₂ сн ₂	^в сн ₃ сн ₃ сн ₂ сн ₃ сн ₂ сн ₀ сн ₂ снос	COHN COHN DDA	0 CH2		нсоинх	инсо	O HA	CH2 OF	

Downloaded At: 17:17 24 January 2011

TABLE 6. ¹³C Chemical Shifts of Synthesized Polyetherurethaneureas

Chemical	Chemical					Carbon	species				
structure code	shift, ppm		2	3	4	5	6	7	8	6	10
	Predicted	43.3	138.5	138.5	127.9	117.9	136.5	153.6	63.8	69.4	72.5
PEUU(400)PDA	Observed Ohserved	41.7 41 4	137.6 137.6	137.6 137.6	129.4 128.6	118.6 118.3	136.2 135.4	154.1 153.6	64.1 63 5	69.3 68.8	70.4 70.0
PEUU(1000)PDA	Observed	41.5	137.8	137.8	128.7	118.4	135.1	153.6	63.6	6.8 <u>0</u>	70.0
PEUU(600)HDA	Observed	40.8	137.6	137.6	129.4	119.0	136.1	154.1	64.1	70.0	70.9
PEUU(600)EDA	Observed	40.9	137.5	137.5	128.6	118.5	136.3	153.4	63.6	68.9	70.2
		1b	2b	3b	4b	5b	6b	7b	8b		
	Predicted	39.8	134.8	129.0	118.0	138.7	155.6	37.2	30.2		
PEUU(400)PDA	Observed	40.8	134.7	130.1	119.0	138.9	156.1	37.3	30.1		
PEUU(600)PDA	Observed	40.9	134.1	128.6	118.8	138.4	155.6	37.2	30.1		
PEUU(1000)PDA	Observed	40.7	134.7	128.7	118.9	138.5	155.6	37.0	30.2		
PEUU(600)HDA	Observed	40.7	134.7	129.4	118.0	138.8	156.0	38.3 ^a	30.9°		
PEUU(600)EDA	Observed	40.8	134.5	128.5	118.8	138.6	155.3	38.5 ^b	26.9 ^d		
^a Predicted value 38.	5.										
^b Predicted value 38.	4.										
^c Predicted value 30.2	3.										
^d Predicted value 27.	-										

1016

TABLE 6. Continued.

RAY AND BHOWMICK

 $\begin{array}{c} R-N-C=0\\ I\\ R-NCO+HC=0 \longrightarrow H-C-0 \longrightarrow R \quad N=CHN(CH_3)_2+CO_2\\ I\\ N(CH_3)_2 \qquad N(CH_3)_2 \qquad (Product 1) \end{array}$

FIG. 1.

$$M = C = 0 + H_2 0 - MH_2 + CO_2$$

PRODUCT 2
H O H
I I I
 $M = C = 0 + H_2 N - M - M - C - N M$
PRODUCT 3

FIG. 2.

TABLE 7. ¹³ C Chemical Shift of 4,4'-Diphenyl
Methane Diamine and Polydiphenyl Methane Urea

	Carbon species	Chemical shift, ppm
Product 2	1b	40.3
	2b	136.0
	3b	129.2
	4b	114.0
	5b	146.5
Product 3	1c	40.3
	2c	135.2
	3c	128.9
	4c	118.3
	5c	138.0
	6с	153.0

Product-2.
$$H_2N O CH_2 O NH_2$$

 $6^{c} 5^{c} + 7^{c} 1^{c} 1^{c}$
Product-3. (NHCO NH O CH₂ O)+

Downloaded At: 17:17 24 January 2011

TABLE 8. ¹³C Chemical Shift of Copolyurethaneureas Synthesized in the Presence of Water in the Prepolymerization Step

	dans monstration of									
Chemical					Ca	rbon spe	cies			
structure code		1	7	e	4	S	6	7	œ	6
H	Chemical shift (ppm)	40.8	135.7	128.7	118.9	138.5	153.6	63.6	68.9	70.0
		la	2a	3а	4a	Sа	6a	7a	8a	
Ι	Chemical shift (ppm)	40.7	135.2	128.7	118.9	137.1	156.6	37.1	30.0	
		lc	2c	3с	4c	5c	90			
ſ	Chemical shift (ppm)	40.6	135.5	128.7	118.9	137.8	152.7			
	T	о Ни И	CH2 2 3	NHCOO	CH2CH2 (о <mark>с</mark> н ₂ сн осн ₂ сн	2 [0			
		(. (_	ı		r			
	_				H2 CH2 CF 8 a	12 NHCON	∔_ ≞			
	י ר			HCONH						

POLYETHERURETHANEUREAS

1019

Downloaded At: 17:17 24 January 2011

TABLE 9. ¹³C Chemical Shift of Block Copolymers Synthesized in the Presence of Water in the Chain Extension Concerned

In the Chain	Extension step									
Chemical					Ca	rbon spe	cies			l
structure code		1	7	3	4	5	6	7	8	6
×	Chemical shift (ppm)	40.7	135.0	128.7	118.4	138.7	153.6	63.6	68.9	70.0
		la	2a	3a	4a	5a	6a	7a	8a	
L	Chemical shift (ppm)	40.7	135.1	128.7	118.9	137.8	155.6	38.3	37.0	
		1b	2b	3b	4b	5b	6b	7b	8b	
M	Chemical shift (ppm)	41.5	135.1	128.1	118.9	137.8	155.6	38.3	30.0	
		lc	2c	3с	4c	5c				
Z	Chemical shift (ppm)	41.0	135.0	128.0	114.0	ł				
		1d	2d	3d	4d	Şd	6d			
0	Chemical shift (ppm)	40.7	135.0	128.7	118.4	137.8	152.7			

RAY AND BHOWMICK

TABLE 9. Continued.

K
$$f_{00CHN} \circ f_{12} \circ NHC00CH2CH2O(CH2CH2O)CH2CH2$$

 $f_{0030} \circ f_{12} \circ NHC00CH2CH2O(CH2CH2O)CH2CH2$
 $f_{003} \circ f_{12} \circ NHC0NHCH2CH2CH2CH2OH2$
M $f_{0} \circ f_{12} \circ NHC0NHCH2CH2CH2CH2NH2$
N $f_{0} \circ f_{12} \circ NHC0NHCH2CH2CH2CH2NH$
O $NH2 \circ f_{12} \circ NHC0NHCH2CH2CH2CH2CH2NH$

Figure 2 shows the reaction of water with isocyanate. 4,4'-Diphenyl methane diamine (Product 2) and polyurea (Product 3) are two stable products. We prepared these two products separately and assigned chemical shift values to the carbon species (Table 7). We could not identify either of these products in the final compound when trace amounts of water were present in the reactants and solvents.

The polymerization was carried out in two steps. In the first step (prepolymerization), polyol was reacted with isocyanate in the solvent medium at high temperature (100°C). In the second step (chain extension), a chain extender was added at low temperature (0°C). In the preparation of these polymers, we deliberately added trace amounts of water in the prepolymerization step and used an absolutely water-free chain extender. The structure of the product is shown in Table 8.

In the next preparation, a trace amount of water was deliberately added with the chain extender. Table 9 shows the structure of the product. It was observed that, in addition to the main product, when water is present in the prepolymerization stage, material containing randomly distributed urethane, urea derived from amine, and urea derived from water were also generated. However, when water was added with the chain extender, the main impurity was polymer with amine groups at the chain end. This was possibly due to the smaller availability of free isocyanate at the chain extension stage. Further, since the temperature is low at this stage, the reaction leading to the formation of urea and diamine (Products 2 and 3 in Fig. 2) is very slow. Our results indicate that it is possible to identify the reactions products with the help of ¹³C spectra due to the presence water at the different reaction stages.

CONCLUSION

The chemical shift values for various carbon species of block copolyurethaneurea are assigned by using the Paul and Grant approach. The presence of water either in the starting materials and/or in the solvents leads to the formation of several side products during the preparation of polyurethaneurea. The presence of water at the prepolymerization stage leads to the formation of randomly distributed urethane and urea groups. Polymers with amine groups at the chain ends are one of the impurities when water is present at the chain extension stage.

ACKNOWLEDGMENT

This study has been supported by Department of Science and Technology, New Delhi, government of India (Grant SP-S1/G07/85).

REFERENCES

- F. A. Bovey, High Resolution NMR of Macromolecule, Academic Press, New York, 1972, p. 48.
- [2] J. B. Stothers, Carbon-13 NMR Spectroscopy, Academic Press, New York, 1972.
- [3] A. V. Cunliffe, in Development in Polymer Characterization (J. Dawkin, ed.), Applied Science Publishers, London, 1978.
- [4] K. J. Ivin, J. Polym. Sci., Polym. Symp., 62, 89 (1978).
- [5] E. G. Paul and D. M. Grant, J. Am. Chem. Soc., 86, 2977 (1964).
- [6] K. H. Mathews, A. McLennaghan, and R. A. Pethrick, Br. Polym. J., 19, 165 (1987).
- [7] C. Delides, R. A. Pethrick, A. V. Cunliffe, and P. D. Klein, *Polymer*, 22, 1205 (1981).
- [8] L. I. Kopusov and N. V. Zharkov, in Synthesis and Physical Chemistry of Urethanes (Soviet Progress in Polyurethanes Series, Vol. II, A. M. Schiller, ed.), Technomic, Westport, Connecticut, 1975, p. 84.

Received August 31, 1989 Revision received April 5, 1991